

Vedejs et al. *can* **also** be rationalized? *As* shown in Scheme III, Vedejs et al. observed that the α -monosubstituted ylides derived from a **1:l** mixture of diastereomers **(27)** gave **32** and **33** in a ratio of **15:l.** Significantly higher stereoselectivity **(>40:1,32:33)** was observed with one of the separated isomers.20 Vedejs et al. proposed that the isomer corresponding to **30** is responsible for the high **>40:1** preference for **32.** This means that the stereoselectivity derived from **28** and **29** is less than **15:l.** This is consistent with our findings. Structures **28** and **30** are more stable than **29** and **31,** respectively, because the *a*propanoyl group is anti to the $S-CH_2$ to minimize steric

(20) The reasoning for conformation of the eight-membered ring and **the equatorial alkylation of 27 can be found in ref 2.**

interactions. The structure **30** is further favored by **having** an endo propanoyl group, while **28** is disfavored by having an exo propanoyl group.

In summary, the transition structures for [2,3]-sigmatropic rearrangements of sulfur ylides correspond to concerted reaction pathways. The forming C---C bond is formed to a small extent, indicating a very asynchronous transition structure. Ylide-stabilizing substituents such as the formyl group make the transition structure more advanced along the reaction coordinate. There is a general tendency for the two partially formed bonds to be eclipsed, which promotes maximal orbital overlap at both termini of the allyl fragment; this tendency is stronger with ylide-stabilizing substituents. The sulfur lone pair prefers to be exo with respect to the allyl moiety; methyl and formyl substituents at the anionic center favor the exo and endo orientations, respectively. The formation of the *2* ring expansion product from a five-membered ylide is favored to minimize ring strain in the five-membered ring. The formation of the E product from a six-membered ylide benefits from ring strain and sulfur lone-pair orientation effects.

Acknowledgment. We are grateful to the National Institutes of Health for financial support of this research and to Professor Edwin Vedejs for helpful comments. This **work** was supported in part by a grant of computer time made possible under a joint study with the IBM Corporation on the IBM 3090/600J Supercomputer at the UCLA Office of Academic Computing.

Registry No. la, 10152-76-8; lb, 5296-62-8; lc, 120983-16-6; Id, 135285-63-1.

Electron-Donating Ability of the Cyclopropyl Substituent in the Solvolyses of an a-CF3-Substituted Secondary-Alkyl Tosylate

Donald D. Roberts

Department of Chemistry, Louisiana Tech University, Rwton, Louisiana 71272

Received May 10,1991

The solvolysis rates of cyclopropyl(trifluoromethy1)carbinyl tosylate (1) have been determined in a series of aqueous alcohol, aqueous trifluoroethanol, and carboxylic acid solvents. Analysis of the rate data for % **in** t ernal-return isomerization and salt effects and correlation with Y_{OTx} values indicates that 1 underwent solvolysis by the k_{Δ} pathway. Comparison of the relative ability $(k(\text{c-Pr})/k(\text{Ph})$ of cyclopropyl and phenyl groups to stabilize carbocation-like transition states in solvolysis reactions of the secondary systems $RCH(Y)CH₃$ and $RCH(Y)CF₃$ reveals that replacement of phenyl with cyclopropyl increases the rate in both systems by a factor of 10².

Introduction

The **unusual** electron-donating ability of the cyclopropyl group to an adjacent electron-deficient center is well- $\text{known.}^{1,2}$ In solvolysis reactions, the rate enhancements observed for a cyclopropyl substituent at the α position have been used in support of **a** mechanism involving neighboring-group participation by the three-membered ring.^{3,4} In earlier papers from this laboratory,⁵ we measured, in a wide range of solvents, the response of the cyclopropyl substituent effect to solvent ionizing power. The results clearly supported the contention that cyclopropylcarbinyl sulfonates undergo solvolysis by a k_A pathway. *As* an extension of our study of the substituent effect-solvent response relationship, we became interested

⁽¹⁾ For recent reviews, *see:* **(a) de Meijere, A.** *Angew. Chem., Int. Ed. Engl.* **1979, 18, 804-826. (b) Tidwell, T. T. In** *The Chemistry* **of** *The Cyclopropyl Group;* **Rappoport, Z., Ed.; Wiley: New York, 1987; Part 1,**

Chapter 10. (2) (a) Brown, H. C.; Peters, E. N. *J. Am. Chem. SOC.* **1973, 95, 24W2401 and references cited therein. (b) Allen, A. D.; Gong, L.; Tidwell, T. T. J.** *Am. Chem. SOC.* **1990, 112,6396-6397.**

⁽³⁾ For a review, see: (a) Richey, H. G., Jr. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; Wiley-Interscience: New York, 1972; Vol. III, Chapter 25. (b) Wiberg, K. B.; Hess, B. A., Jr.; Ashe, A. J., In Carbon

^{(5) (}a) Roberts, D. D. J. Org. Chem. 1964, 29, 294–297. (b) Roberts, D. D.; Watson, T. M. J. Org. Chem. 1970, 35, 978–981. (c) Roberts, D.
D. J. Org. Chem. 1970, 35, 4059–4062. (d) Roberts, D. D. J. Org. Chem. **1984,49, 2521-2526.**

5662 J. Org. Chem., Vol. 56, No. 19, 1991

Teble I Solvolveis Rete Constants Determined in This Study

 \degree c-PrCH(OTs)CF₃ = cyclopropyl(trifluoromethyl)carbinyl tosylate. \degree Errors reported as one standard deviation from the mean. \degree Percent by volume. For example, 80E-W means 80 volumes of ethanol plus 10 volumes of water, both at 25 °C before mixing. ^dPercent by weight. For example, 97TFE means 97 g of trifluoroethanol plus 3 g of water.

in substrates strongly deactivated by a trifluoromethyl group at the α position. To this end, we investigated the solvolyses of tert-butyl(trifluoromethyl)carbinyl tosylate.⁶ We found that the β -methyl substituent in this strongly deactivated pinacolyl system, in contrast to its behavior in the parent compound,⁷ also responded to solvent ionizing power in a manner consistent with a k_{Δ} process. In the light of this finding and the recent interest⁸⁻¹² in solvolytic mechanisms involving electron-deficient carbocations, it occurred to us that a reaction involving such a high electron-demand species would be appropriate for

(6) Roberts, D. D.; Hall, E. W. J. Org. Chem. 1988, 53, 2573-2579.
(7) Harris, J. M.; Mount, D. L.; Smith, M. R.; Neal, W. C., Jr.; Dukes, M. D.; Raber, D. J. J. Am. Chem. Soc. 1978, 100, 8147-8156 and references cited therein.

(8) For a review, see: Gassman, P. G.; Tidwell, T. T. Acc. Chem. Res.

1983, 16, 279–285.

(9) (a) Gassman, P. G.; Harrington, C. K. J. Org. Chem. 1984, 49,

2258–2273. (b) Gassman, P. G.; Harrington, C. K. J. Org. Chem. 1984, 49, 2258-2273.

, 10) Richard, J. P. J. Am. Chem. Soc. 1986, 108, 6819–6820.
(11) Liu, K.-T.; Kuo, M.-Y.; Shu, C.-F. J. Am. Chem. Soc. 1982, 104, $211 - 215.$

Table II. % Internal-Return Isomerization[®]

	compds	
solvent	c -PrCH(OTs)CF ₃	c-PrCH ₂ OSO ₂ Ar
AcOH	32°	$51d$ 48, e 50 ^{f}
50A/F	376	31 ^d
HCO ₂ H	258	$28,^d 23^e$
EtOH	ው	$5,4,7,6$ 10
80E-W	216	20 ^d
60E-W	256	28^d
97TFE	30 ^r	30,°32'
70TFE	255	

^aCalculated from the following equation: % internal-return isomerization = $[100 - (mol % infinity titer^b)]$. ^bInfinity titer = mole % of arylsulfonic acid liberated at 10 half-lives. 'At 40 °C. ${}^d P$ -Toluenesulfonate at 20 °C, unpublished results for kinetic data contained in ref 5a,d. *Pentamethylbenzenesulfonate, 15-30 °C, ref 4. β -Naphthalenesulfonate at 30 °C, unpublished results for kinetic data contained in ref 31. ^{*At*} 35 °C. ^{*A*} At 50 °C.

furthering our study of the cyclopropyl substituent effect-solvent response relationship. Also, it would be appropriate for comparison, under high electron-demand conditions, of the relative ability of the cyclopropyl and phenyl groups to delocalize the positive charge from an electron-deficient center.^{13,14} Thus, in this paper we report

^{211–210.&}lt;br>
(12) (a) Allen, A. D.; Jansen, M. P.; Koshy, K. M.; Mangru, N. N.; Tidwell, T. T. J. Am. Chem. Soc. 1982, 104, 207–211. (b) Allen, A. D.; Tidwell, T. T. J. Am. Chem. Soc. 1983, 105, 2343–2350. (c) Allen, A. D.; K Tidwell, T. T. J. Am. Chem. Soc. 1980, 102, 1216-1218.

⁽¹³⁾ For a summary and discussion of the relative electron-donating abilities of the cyclopropyl and phenyl substituents, see: Arnett, E. M.;
Hofelich, T. C. J. Am. Chem. Soc. 1983, 105, 2889-2895.

Table **III.** Summary of *m* Values Derived from the m_0r_s **Equation**

compd	m values ^a	no. of solvents	"b
$c\text{-}PrCH(OTs)CF3(1)$	0.83 ^c	6 ^d	0.999
neophyl tosylate (2)	0.70^{e}	13	0.996
c-PrCH ₂ OTs (3)	0.81^e	10	0.995
c -bu OBB (4)	0.80°	12	0.990
pinacolyl brosylate (5)	0.82^e	9	0.995
$PhCH(OTs)CF3$ (6)	0.69'	3	0.990
p -AnCH(OTs)CF ₃ (7)	0.76^{f}	9	0.993

"Calculated by use of eq 1: $\log k/k_0 = mY_{\text{OTs}}$. ^b Correlation coefficient for the regression analysis. Calculated from rate data listed in Table I, this study. dPoints for TFE solvents excluded (see ref **38). e** Calculated from rate data listed in Table 11, ref **5d.** 'Reference **12b.**

the kinetic investigation of the solvolytic reactions of cy**clopropyl(trifluoromethy1)carbinyl** tosylate **(1)** in a series of solvents ranging in ionizing power from ethanol to formic acid.

Results and Discussion

The substrate c-PrCH(OTs)CF3 **(1)** was prepared from the corresponding alcohol by reaction of $CF₃CHO$ with c-PrMgBr. The kinetics of reaction of **1** in various solvents and of neophyl tosylate **(2)** in aqueous trifluoroethanol solvents were followed titrimetrically **as** reported in Table I. The reactions for **1** in all solvents were accompanied by internal-return isomerization^{4,15,16} to less reactive, rearranged starting material, $17,18$ and consequently the apparent first-order rate constants, k_t , were computed on the basis of the infinity titer.^{19,20} The extent of internal-return isomerization in various solvents for **1** and its parent compound, cyclopropylcarbinyl tosylate **(3),** are presented in Table 11. In Table I11 we have listed the correlation of the rate data given in Table I vs Y_{OTs} values.²¹ The effects of added salt on the reactivity of **1** and **2** in both 80% aqueous ethanol and acetic acid are summarized in Table IV.

In solvolytic reactions, the presence of the trifluoromethyl substituent at the α position leads to significant rate depressions compared to hydrogen. The reported values^{8,12a,df} of the $k(H)/k(CF_3)$ rate ratio vary from 10^{-4} to 10^{-7} , depending on solvent. Comparison of rate data given for 1, in Table I, with that previously reported^{5a} for cyclopropylcarbinyl to sylate (3) permits the calculation of a $k(H)/k(CF_3)$ rate ratio of 1.06 \times 10⁻⁴ at 20 °C in 80% aqueous EtOH. This value fits within the range given above. Comparison of rates for c-PrCH(OTs) $CF₃$ and c-PrCH(OTs)CH₃²² gives a $k(CF_3)/k(CH_3)$ rate ratio of 2.6 \times 10⁻⁸ at 20 °C in 50% aqueous EtOH. This value compares well with the $k(\text{CF}_3)/k(\text{CH}_3)$ rate ratio of 1.6×10^{-8}

(18) Hanack, M.; Meyer, H. *Liebigs Ann. Chem.* **1968, 720, 81-97.** (19) Servis, K. L.; Roberts, J. D. Tetrahedron Lett. 1967, 1369.
(20) Macomber, R. S. J. Org. Chem. 1971, 36, 2182–2184.
(21) Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17,

Table IV. Salt Effects **on** the Solvolysis of c-PrCH(OTs)CF₃ and Neophyl Tosylate at 60 °C

solvent	salt	concn(M)	k_{obed}^a (s ⁻¹)
AcOH ^b	NaClO ₄	0.00	$(6.36 \pm 0.1) \times 10^{-7}$
		0.02	$(7.54 \pm 0.1) \times 10^{-7}$
		0.04	$(8.47 \pm 0.1) \times 10^{-7}$
		0.06	$(9.80 \triangleq 0.05) \times 10^{-7}$
$80E-W^b$	NaN,	0.00 ^d	$(1.79 \pm 0.05) \times 10^{-6}$
		0.02 ^d	$(1.89 \pm 0.03) \times 10^{-6}$
		0.04^d	$(1.96 \pm 0.05) \times 10^{-6}$
		0.06 ^d	$(2.06 \pm 0.04) \times 10^{-6}$
$80E-Wc$	\textsf{NaN}_3	0.00 ^e	$(8.39 \pm 0.05) \times 10^{-6}$
		0.02^e	$(8.86 \pm 0.04) \times 10^{-6}$
		0.04 ^e	$(9.40 \pm 0.07) \times 10^{-6}$
		0.06 ^e	$(9.90 \pm 0.07) \times 10^{-6}$

^aErrors reported **as** one standard deviation from the mean. For c-PrCH(OTs)CF,. For neophyl tosylate. dInfinity titers were **81, 77, 76,** and **74%** of the theoretical values for 0.00, **0.02,** 0.04, and **0.06** M NaN,, respectively. eInfinity titers were 100, **94, 91,** and **88%** of the theoretical values for 0.00, 0.02, 0.04, and 0.06 M NaN₃, respectively.

calculated²⁴ for the secondary system $PhCH(OTs)R$ at 25 "C in 97% TFE. These results indicate that there is a high degree of destabilization of the cationic transition state by the CF₃ group in the solvolysis reactions of $1.^{12d,e}$

The data in Table I1 show that, **as** to the extent of internal-return isomerization and its response to solvent change, there is a noticeable difference between **1** and 3. For example, in the solvolysis reactions of 3 , we found⁴ that the change from acetic acid to 97% TFE solvent led to a significant decrease in the amount of internal-return isomerization. Such a finding can be interpreted²⁶ in terms of the multiple ion-pair mechanism.²⁷ Here (eq 1), solvent

$$
\bigotimes -0Ts + CH_2=CHCH_2CH_2OTs
$$

internal-return
isoperization

$$
\bigotimes -CH_2OTs \xrightarrow{\longrightarrow} CqH_7^+ OTs^- \xrightarrow{\longrightarrow} CqH_7^+ \text{||} OTs^-
$$
 (1)
sol
products
products

induced shifts in equilibrium between the different types of ion pair intermediates (intimate to solvent-separated) could account for the variation in the extent of internalreturn isomerization with solvation changes. $27-29$ On the

(26) Paradisi, C.; Bunnett, J. F. J. *Am. Chem.* SOC. **1985, 107, 8223-8233.**

⁽¹⁴⁾ For leading references, see: Farcasiu, D.; **Sharma,** S. J. *Org. Chem.* **1991,56, 126-128.**

⁽¹⁵⁾ Caserio, M. C.; Graham, W. H.; Roberta, J. D. *Tetrahedron* **1960, 11, 171-182.**

^{11, 11-1-02.&}lt;br> **(16) Roberts, D. D. J. Org. Chem. 1966, 31, 2000–2003.**

(17) Largely CF₃CH=CHCH₂CH₂OTs based on kinetic analysis and the product study of Hanack.¹⁸

^{121-158.}

⁽²²⁾ The rate constant for **1** in *50%* aqueous EtOH **(1.4 X lo-'** at **20** °C) was derived from a mY_{OTs} correlation. The rate constant for c-
PrCH(OTs)CH₃ in 50% aqueous EtOH (5.4 at 20 °C) was derived as
follows: k[c-PrCH(OTs)CH₃] = k[c-PrCH(Cl)CH₃]²²⁴(OTs/Cl) where an
OTs/Cl ratio o

^{649-660.} (b) Extrapolated from data at higher temperatures given in ref **15** and **23c.** (c) Brown, H. C.; Borkowski, M. *J. Am. Chem.* **SOC. 1962, 74, 1894-1902.**

⁽²⁴⁾ The rate constant for PhCH(OTs)CF₃ was taken from ref 12b, and the rate constant for PhCH(OTs)CH₃ was derived as follows: k-[PhCH(OTs)CH₃] = k[PhCH(Cl)CH₃]²⁶(OTs/Cl) where the same value

calculated in ref 22 was used for the OTs/Cl ratio.

(25) Shiner, V. J.; Fisher, R. D.; Dowd, W. *J. Am. Chem. Soc.* 1969, **91,7748-7749.**

⁽²⁷⁾ For a review of the Winstein Solvolysis scheme, *we:* Bentley, T.

W.; Schleyer, P. v. R. Adv. Phys. Org. Chem. 1977, 14, 1–67.
(28) (a) Raber, D. J.; Harris, J. M.; Schleyer, P. v. R. J. Am. Chem.
Soc. 1971, 93, 4829–4834. (b) Harris, J. M.; Clark, D. C.; Becker, A.;

Fagan, J. F. *J. Am. Chem. Soc.* **1974, 96, 4478-4484. (29)** The long-standing controversy³⁰ over the nature of the electrondonating interaction between the cyclopropyl group and an adjacent electron-deficient center greatly increases the interpretational difficulty. It may be that the initially formed ion pairs have sufficiently different sensitivities **to** solvation changes to account for the change in the extent of internal-return isomerization, but it seems more likely, based on the composition of the isomerized starting material,^{64,31} that this would be the case for shifts in equilibrium between two types of ion pairs (initimate, involving a rapidly equilibrating set of cations in the bisected geometry, and solvent-separated, involving a set of rapidly equilibrating cations in the σ -bridged form).
(30) For a recent study on this subject, see: Brittain, W. J.; Squilla-
cote, M. E.; Roberts, J. D. J. Am. Chem.

cote, M. E.; Roberts, J. D. *J. Am. Chem.* **SOC. 1984,106,72W7282.** (b) Myhre, P. C.; Webb, **G.** G.; Yannoni, C. S. J. *Am. Chem.* **Soc. 1990,112, 8992-8994.**

other hand, we find for the solvolysis reactions of 1 that the extent of internal-return isomerization changes little when the solvent is changed from acetic acid to **97%** TFE. This result, as expected for such a highly destabilized carbocation as $(c\text{-}PrCHCF_3)^{+,12d,32}$ is consistent with internal-return isomerization from the first-formed ion pair, most likely an intimate ion-pair type as shown in eq 2.

$$
F_3CCH=CHCH_2CH_2OTs
$$
\n
$$
internal-return \int is one rization
$$
\n
$$
F_3C-C_4H_6*OTs^- = \frac{SOH}{ST}F_3C-CH_2OS + \frac{CH_2OS}{ST} + \frac{CH_2OS}{ST} = \frac{CH_2OS}{TS}
$$

The effect of solvent on the rate of reaction of a substrate has proven to be a very useful criterion for assignment of reaction mechanism. $6,7,27,33-37$ Accordingly we list, for I and other selected arenesulfonates, $m_{\rm OTs}$ values obtained from correlations of $\log k/k_0$ against Y_{OT_8} ,^{21,38} based on solvolysis of 2-adamantyl tosylate. Neophyl tosylate (2) is thought^{5d,40,41} to solvolyze with aryl participation uncomplicated by either internal return^{$26,42$} or nucleophilic solvent assistance,²⁷ cyclopropylcarbinyl arenesulfonates (3) with cyclopropyl participation complicated by internal return,⁵ cyclobutyl^{4,43} and pinacolyl⁷ brosylates (4 and 5) with neighboring-group participation, 44 and the 1-aryl-2,2,2-trifluoroethyl tosylates $(6 \text{ and } 7)$ via a k_c process.^{12b} The data in Table III show that the m_{OTs} value for 1 is significantly less than 1.00, but quite similar to those for **2-7.** Substrates reacting with neighboring-group participation are known^{33,41a,45,46} to give m values significantly less than 1.00, most likely due to delocalization of positive charge.2I These results are consistent with a rate-limiting ionization mechanism for the solvolyses of **1.** The fact that the solvolyses of 1 yield largely rearranged products¹⁸ plus

(36) Allen, A. **D.;** Kanagasabapathy, V. M.; Tidwell, T. T. *J. Am. Chem.* **SOC. 1986,107,4513-4519.**

(37) Kevill, D. N.; Anderson, S. W. *J. Am. Chem.* SOC. **1986,** *108,* 1579–1585.

(38) The exclusion of the points for 97 and 70% TFE, which lie sig-

Table V. k(c-Pr)/k(Ph) Rate Ratios for the Secondary Systems RCH(Y)CH, and RCH(Y)CF,

system		solvent	temp, °C	$k(c\text{-}Pr)$ / $k(\text{Ph})^{\sigma}$
CH,	-Cl	50% aq EtOH	20	100 ^b
CH,	$-OPNB$	60% ag acetone	60	150 ^c
CF ₂	-OTs	97% ag TFE	25	60 ^d
H¢	$-OTs$	97% ag TFE	25	90'

a Comparison of the solvolysis rate of the cyclopropyl-substituted compound with that of the phenyl-substituted substrate. ^bRate constant for c-PrCH(Cl)CH₃ $(5.2 \times 10^{-2} \text{ s}^{-1})$ taken from ref 23a;
that for PhCH(Cl)CH₃ (5.0×10^{-4}) taken from ref 52. 'Rate con- $\text{stant for } c\text{-PrCH}(\text{OPNB})\text{CH}_3 (9 \times 10^{-7}) \text{ calculated from data taken}$ from ref 53; that for PhCH(OPNB)CH₃ (9×10^{-9}) calculated from data taken from ref 54. ^{*d*} Rate constant for c-PrCH(OTs)CF₃, this study; for PhCH(OTs)CF₃, ref 12b. ^{*e*}For the primary system</sup> RCH₂Y. *'*Rate constant for c-PrCH₂OTs (4.0×10^{-2}) calculated from a 16-point m_{OT_n} plot; that for PhCH_2OT_8 taken from ref 55, using the well-known OTs/OBs ratio of 3.

the observation that these reactions are accompanied by internal-return isomerization supports a k_A mechanism as shown in eq 2.

Additional support for a rate-limiting ionization mechanism for the solvolysis of 1 comes from the effects of salts on rate of reaction. Thus, the nonnucleophilic salt, Na-C104, **as** reported in Table IV, causes a significant increase in rate **(54%** for 0.06 M salt). This sensitivity to ion-atmosphere parallels that of both cyclopropylcarbinyl and cyclobutyl nasylates^{5c} and is expected for a k_c or k_A process. More importantly, **1** shows very little rate enhancement due to added azide ion (15% for **0.06** M salt). This result is similar to that observed for neophyl tosylate (18% for 0.06 M salt) and 2-adamantyl tosylate⁴⁷ (16% for 0.06 M salt) and contrasts with the marked rate enhancement **(294%** for 0.06 M salt) observed for the solvolysis of 2 propyl tosylate⁴⁷ in 80% aqueous EtOH. Since it is generally agreed that both neophyl tosylate and 2-adamantyl tosylate⁴⁸ react by a rate-limiting carbocation formation and 2-propyl tosylate by a k_s process,⁴⁸ a rate-limiting ionization mechanism such as that given in eq 2 can be assigned to the solvolysis reactions of **1.**

The relative ability of neighboring cyclopropyl and phenyl substituents to delocalize charge in carbocations is a subject of current interest.^{1b,14,49} Opposite conclusions concerning this subject-based on studies of solvolysis rate measurements⁵⁰ and on determinations of ¹³C chemical shift values of carbocations in superacidic media⁵¹prompted these studies. Recently, in a study¹⁴ involving ¹³C chemical shift measurements of 2,6-disubstituted pyrylium cations, it was concluded, in agreement with solvolytic studies, that the cyclopropyl group is a more powerful electron donor than phenyl. In Table V, we compare the relative ability $[k(c-Pr)/k(Ph)]$ of cyclopropyl and

(48) For leading references, see ref 33.

(49) Murata, A.; Sakaguchi, S.; Fujiyama, M.; Mishima, M.; Fujio, M.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1990, 63, 1138.

(50) (a) Brown, H. C.; Ravindranathan, M.; Peters, E. N. J. O

⁽³¹⁾ Roberta, **D. D.** *J. Org. Chem.* **1971,36,1913-1915.**

⁽³²⁾ On the basis of product studies for the solvolysis reactions of **1,18** Hanack propoeed a bridging interaction between the cyclopropyl group and the adjacent highly electron-deficient center.

⁽³³⁾ Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P. v. R. *J. Am. Chem. SOC.* **1981,103,5466-5475.**

⁽³⁴⁾ Bentley, T. W.; Carter, G. E. *J. Am. Chem. SOC.* **1982, 104, 5741-5747.**

⁽³⁵⁾ Bunton, C. A.; Mhala, M. M.; Moffatt, J. R. *J. Org. Chem.* **1984,** 49, 3639-3641.

nificantly below the regression line and have approximately the same value, is justified by the following observations: (1) in a study³⁹ of the solvolysis of mustard chlorohydrin, a substrate known to react via a k_A process, abnormally low rates were shown in aqueous TFE **as** compared

to rates in aqueous ethanol and aqueous acetone solvents and (2) neophyl
tosylate, another compound known to react via a k_A pathway, also dem-
onstrates anomalous behavior in aqueous TFE solvents.⁰⁰
(39) McManus, S. P

⁽⁴²⁾ McManus, **S.** P.; Smith, M. R.; Shankgreiler, J. M.; Hoffman, R. V. *J. Org. Chem.* **1988,53,141-148.**

⁽⁴³⁾ Roberta, D. D. J. *Org. Chem.* **1972,37,1510-1513.**

⁽⁴⁴⁾ For a review, **see:** Capon, B.; McManus, S. P. *Neighboring Group Participation;* Plenum: New York, **1978;** Vol. **1,** pp **167-168.**

⁽⁴⁵⁾ Schadt, F. L., III; Lancelot, C. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1978, 100, 228-246. *C.* **J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1978**, 100, 228-246.

⁽⁴⁶⁾ Roberta, **D.** D.; Snyder, R. C., Jr. *J. Org. Chem.* **1980, 45, 4052-4055.**

⁽⁴⁷⁾ Raber, D. J.; Harris, J. M.; Hall, R. E.; Schleyer, P. v. R. *J. Am. Chem. SOC.* **1971,93,4821-4828.**

^{1977,42,1073-1076. (}b) Brown, H. C.; Peters, E. N. *J. Am. Chem.* SOC. **1977,99, 712-1716.**

^{1977, 1987, 112–1716.&}lt;br>
(51) (a) Olah, G. A.; Porter, R. D.; Kelly, D. P. J. Am. Chem. Soc. 1971,

93, 464–466. (b) Olah, G. A.; Westerman, P. W.; Nishimura, J. J. Am.

Chem. Soc. 1974, 96, 3548–3559.

(52) Fainberg, A. H.;

^{1597-1602.}

⁽⁵³⁾ Sneen, R. A,; Baron, A. L. *J. Am. Chem.* SOC. **1961,83,614-617.** *(54) Goering, H. L.; Briody, R. G.; Sandrock, G. J. Am. Chem. Soc.*
 1970.92.7401-7407.
 1970.92.7401-7407.
 1970.92.7401-7407.
 1970.92.7401-7401.

⁽⁵⁵⁾ Shiner, **V. J.,** Jr.; Ropp, M. W.; Pinnick, H. R., Jr. *J. Am. Chem. SOC.* **1970,92, 232-233.**

phenyl groups to stabilize carbocation-like transition states in solvolysis reactions of the secondary systems RCH- $(Y)CH₃$ and $RCH(Y)CF₃$. The data reveal that replacement of phenyl with cyclopropyl increases the rate in both systems by a factor of 10². Clearly, in keeping with previous studies,^{1b,56} cyclopropyl is more effective than phenyl in stabilizing an electron-deficient site, even with the *a*trifluoromethyl-substituted system where the electron demand for stabilization is unusually high. Moreover, the relative ability of these two groups to conjugate with the electron-deficient center, **as** evidenced by the data in Table **V,** is nearly insensitive to marked differences in electron demand. In this regard, it is of interest to note that the value of $k(c-Pr)/k(Ph)$ for the primary system RCH(Y)H is also about $10²$. While the rate data used in the calculation of this value are somewhat soft, 57 it is generally accepted58 that TFE is a suitable solvent for promoting neighboring-group assistance over that by solvent.

Experimental Section

Cyclopropyl(trifluoromethyl)carbinol. This compound was prepared in **43%** yield by a modification of the method of Hanack.18 Accordingly, trifluoroacetaldehyde (prepared by adding **50** g **(0.32** mol) of trifluoroacetaldehyde ethyl hemiacetal to a mixture of 300 g of polyphosphoric acid, 94 g of P_2O_5 , and 300 g of o-phosphoric acid maintained at **170 5** "C), was passed into a cooled solution of cyclopropylmagnesium bromide (prepared from **31.2** g **(0.25** mol) of cyclopropyl bromide and **6.2** g **(0.13** g equiv) of magnesium turnings in **300** mL of dry ether), with the assistance of a slow stream of dry nitrogen, over a 75-min period. After the solution was stirred **3** h at room temperature and the usual workup, fractional distillation gave **15.1** g **(0.11** mol) of a single product, **as** determined by gas chromatography: bp **73-75** OC **(100** Torr) [(lit.l* bp **73-75** "C **(100** Torr)]. The FTIR and 'H NMR spectra were consistent with those reported in the literature for **cyclopropyl(trifluoromethyl)carbinol.18**

Cyclopropyl(trifluoromethyl)carbinyl Tosylate (**1).** The general procedure used by Tidwell^{12b} for the preparation of various alkyl tosylates was used to prepare 1. In a dry three-neck 100-mL, round-bottom flask equipped with a magnetic stirring bar, a CaCl₂ drying tube, a septum inlet, and an inlet tube through which a slow stream of dry nitrogen was passed was placed **1.06** g **(35** mmol) of NaH (80% in mineral oil), which was washed three times by injecting and withdrawing 10-mL portions of pentane by syringe, followed by two washes with **10-mL** portions of dry ether

(<0.0006% water). Next, a solution of **2.0** g **(14** mmol) of cyadded via a syringe over a 25 min period to the stirred reaction mixture. This was followed by stirring at room temperature for **1** h. Then **2.6** g **(14** mmol) of p-toluenesulfonyl chloride in **25** mL of dry ether was added via a syringe to the reaction mixture, followed by additional stirring at room temperature for 4 h. Then, **40** mL of water was added, the layers were separated, and the aqueous layer was extracted twice with 40-mL portions of ether. The combined ether layers were washed once with **40** mL of **5%** aqueous NaHCO₃, dried over a mixture of Na_2CO_3 and MgSO_4 , and gravity filtered, and the ether was removed by rotovaporization. The resulting oil, after standing a few minutes at **-10** "C, yielded **2.8** g of an off-yellow solid. Recrystallization from 25 **mL** of hot pentane-benzene **(%lo)** gave **1.6 g** of white feathers: mp **45.5-46 OC** (lit.18 mp **46-46.5** "C).

Solvents were prepared **as** previously described.'

Rate Measurements. The rates of solvolysis were followed titrimetrically. In a typical kinetic run, the requisite amount of ester was accurately weighed into a **25-mL** volumetric flask and then sufficient solvent was added rapidly to give a **25-mL** reaction solution volume.⁵⁹ Reaction time commenced with the addition of half the solvent. The solvent used for each kinetic run was thermostated in a constant temperature bath held at ± 0.05 °C at least *5* min prior to a run. At appropriate times, **2-mL** aliquots were analyzed for liberated p-toluenesulfonic acid. The titrating solutions were as follows: for acetic acid-formic acid solvents,⁶¹ **0.020** N sodium acetate in acetic acid; and for the aqueous alcohol solvents, **0.016-0.021** N sodium hydroxide in **95%** aqueous methanol. The indicators used were **as** follows: for acetic acidformic acid solvents, bromophenol blue (in acetic acid), **2-3** drops; and for aqueous alcohol solvents, bromothymol blue (in water), **2** drops.

Treatment of Kinetic Data. First-order rate constants were calculated by using the integrated first-order rate equation:^{62,63} $k_t = 1/t \ln \left(m L_{\infty} / m L_{\infty} - m L_t \right)$. Multiple determinations (6-12) were made for each kinetic run. The activation parameters recorded in Table I were obtained by regression analysis⁶⁴ of ln (k_t/T) versus $1/T$,⁶⁵ and the *m* values listed in Table **III** were also obtained by regression analysis of log k_t versus Y_{OTs} values.²¹

Registry **No. 1, 22581-19-7;** neophyl tosylate, **21816-03-5; cyclopropyl(trifluoromethyl)carbinol, 2516-33-8.**

(63) The parameter mL_n = measured titer at 10 half-lives or theoretical titer at **100%** conversion calculated from **known** quantity of **to.** sylate ester present in the reaction mixture; mL_t = measured titer at time *t.*

(65) Reference **62b,** Chapter **7.**

⁽⁵⁶⁾ (a) Brown, **H.** C.; Ravindranathan, M. J. *Am. Chem. SOC.* **1975, 97.2895-2898.** (b) Brown. **H.** C.: Ravindranathan. **M.:** Rao. C. *G. J. Am. Chem. SOC.* **1978, ZOO, 121b1222.** (c) Peters, E. N.; Brown,'H. C. J. *Am. Chem. Soc.* 1973, 95, 2397-2398.

(57) Experimental data for solvolyses of cyclopropylcarbinyl arene-

⁽⁵⁷⁾ Experimental data for solvolyses of cyclopropylcarbinyl arene- sulfonates in solvents of low nucleophilicity-high ionizing power (i.e., fluorinated **alcohols)** are *scnrce-these* data **are** difficult to obtain because of the high reactivity of cyclopropylcarbinyl substrates. **(58)** Bentley, T. W. In *Nucleophilicity;* **Harris,** J. M., McManus, S. P.,

Eds; ACS Advances in Chemistry Series **216;** American Chemical Society Washington, DC, **1987;** pp **255-268.**

⁽⁵⁹⁾ For reactions whose half-lives were greater than 72 h and whose
reaction temperatures were greater than 50 °C, rate measurements were
obtained by the ampule technique.⁶⁰ (60) Roberts, D. D. J. Org. Chem. 1982, 47,

⁽⁶¹⁾ For reactions in formic acid or acetieformic acid mixtures, it waa necessary to dilute the 2-mL aliquota with **2** mL of acetic anhydride- acetic acid **(7525)** to obtain a sharp end point.

⁽⁶²⁾ (a) Frost, A. A.; Pearson, R. G. *Kinetics and Mechunism,* 2nd ed.; Wiley New York, **1961.** (b) Carpenter, **R.** G. *Determination of Organic Reaction Mechanisms;* Wiley: New York, **1984;** Chapter **4.**

⁽⁶⁴⁾ Edwards, A. **L.** *An introduction to Linear Regression and Correlation;* Freeman: San Francisco, **1976;** pp **21-32.**